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A description of the incipient bending of a round incompressible jet issuing into a 
weak crossflow is presented. Axial vorticity is shown to appear from the early stages 
of the jet evolution owing to the distortion and reorientation of the azimuthal 
vorticity, and it eventually dominates the flow around the jet and determines the 
shape of its cross-section. 

The crossflow is considered weak enough for the distortion of the jet to occur 
downstream of its development region, where diffusion already influences the whole 
cross-section and the jet can be modelled as a point source of momentum. Axial 
pressure gradient and axial diffusion are negligible under these conditions, since the 
jet is a slender structure. 

Sufficiently near the origin, a finite-length entraining wake is identified on the lee 
side of the jet, which gradually merges with the main core. A t  the same time, the 
cross-section begins to acquire a characteristic elongated shape, with the jet 
concentrating in a thin layer. Farther downstream the axial vorticity of the jet 
rearranges into a couple of large locally two-dimensional contrarotating vortices 
standing against the wind under the action of their own induced velocity, and a 
smaller vortex sheet coinciding with the distorted jet. 

1. Introduction 
Observation of a strong jet issuing into a weak uniform transverse wind shows that 

the jet cross-section changes from circular to kidney-shaped and that two contra- 
rotating vortices parallel to the jet appear on its lee side, which gradually dominate 
the dynamics of the surrounding fluid. At the same time the jet begins to bend in the 
direction of the wind. 

Early research focused on the empirical description of global features of turbulent 
jets, mainly the jet path (Jordinson 1958; Keffer & Baines 1963; Pratte & Baines 
1967). Kamotani & Greber (1972) measured, in addition to the jet path, cross- 
sectional mean velocity distributions over a wide range of jet-to-wind velocity ratios. 
They pointed out the presence of a vortex pair deforming the cross-section and even 
shifting the location of the maximum velocity from the symmetry plane toward the 
centres of the vortices. Also, from their measurements, they suggested that the 
turbulent entrainment is nearly independently controlled by the components of the 
wind velocity normal and parallel to the jet. Placing particular emphasis on the 
vortex structure, Fearn & Weston (1974) described the flow transverse to  the jet as 
the superposition of the uniform wind and a couple of locally straight vortices whose 
position, size, and strength were determined from the measured velocity field. 

Integral models are the first semi-empirical tool used in the analysis of these A ows. 
They give the evolution of global quantities along the jet by applying conservation 
equations is integral form, and require definite assumptions on the cross-sectional 
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shape and velocity profiles, entrainment rate, and surface forces. Differences among 
the models arise in the representation of these features. For example, the model of 
Sucec & Bowley (1976), as well as some earlier models, does not specify an 
entrainment rate ; instead the rate of expansion of the jet boundary is prescribed as 
an empirical relation. In this model, and in those of Vizel & Mostinskii (1965) and 
Endo (1974) among others, the deflection of the jet is attributed to the pressure drag, 
and the momentum supplied by the entrained fluid is neglected. Examples of exactly 
the opposite assumption are the models of Platten & Keffer (1968) and Hoult & Weil 
(1972), while more sophisticated models include both effects. The success of an 
integral model is typically measured by its ability to predict the jet trajectory and 
size. However, these predictions seem to depend not only on the physical assumptions 
involved in the formulation of the model, but also on the tuning of the functions and 
coefficients used to represent the physical processes. It appears that there are many 
even contradictory combinations of physical assumptions leading to reasonable 
results and, as a consequence, integral models are of very limited value to elucidate 
the mechanics of the flow. 

A number of models have been proposed that also predict details of the flow field. 
Adler & Baron (1979) were able to predict the development of a kidney-shaped cross- 
section by considering the evolution of a two-dimensional vortex sheet along the 
boundaries of the jet and expressing the growth rate of the cross-section as the sum 
of that of a turbulent jet in stagnant fluid and a contribution due to a vortex pair. 
The idea that a three-dimensional vortex sheet can be approximated by a two- 
dimensional one evolving in time dates back to Chen (1942). However, Coelho & 
Hunt (1989) showed that the approximation is fundamentally incorrect because it 
leaves out the interplay between axial and transverse vorticity components, which 
is an important element of the real three-dimensional flow. The model of LeGrives 
(1978) includes a locally two-dimensional vortex pair slightly behind the jet 
trajectory, whose characteristics and the entrainment rate they induce are evaluated 
using vortex dynamics laws and a correspondence with another model based on 
pressure drag. Karagozian (1986) models the jet as a couple of contra-rotating 
Rankine vortices moving, together with the surrounding fluid, under the action of 
forces induced on one another. The cores of the vortices grow due to turbulent 
diffusion and their strength is given by an empirical relation in terms of the flow 
impulse and the vorticity associated to the shear of the wind on the lateral boundary 
of the jet. All these models contain empirical elements supported, at best, by 
plausibility arguments or by consistency with the basic conservation laws. 

Many inviscid analyses exist, beginning with the work of Chen (1942), which 
describe the effect of the wind in the potential core of the jet and retain a qualitative 
value farther downstream. A definite assessment of what aspects of the real flow can 
be understood independently of the viscosity or the modelling of Reynolds stresses 
is provided by the works of Needham, Riley & Smith (1988), Coelho & Hunt, and 
Needham et al. (1990). They consider an inviscid three-dimensional vortex sheet 
model for the near field of a jet with high jet-to-wind velocity ratio (the jet issuing 
from an orifice in a plate in the work of Coelho & Hunt, and from a semi-infinite pipe 
in that of Needham et d.). The inviscid models demonstrate that the distortion of the 
main azimuthal vorticity, with generation of additional axial and transverse 
vorticity, has already begun in the interior of the pipe. However, they also predict 
an unrealistic symmetric deformation of the cross-section outside the pipe and no 
overall deflection of the jet in the direction of the wind when the wind and the issuing 
jet are strictly perpendicular. The analysis of Needham et al. predicts a deflection of 
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the jet when there is a co-flowing component of the velocity external to the jet. 
Coelho & Hunt were able to restore this important feature by modelling the jet as an 
entraining vortex sheet, with an entrainment rate proportional to the velocity jump 
across the sheet. 

More detailed predictive methods for developed turbulent jets should rely on 
numerical solutions of the relevant conservation equations. However, direct 
numerical simulation of this problem involves strong computer requirements, 
specially for large jet-to-wind velocity ratios for which the evolution of the jet spans 
large regions. As a consequence, a variety of numerical techniques has been tried in 
conjunction with different closure models, ranging from a constant turbulent 
viscosity in early work (e.g. Chien & Schetz 1975) to the routine use of k--E models in 
more recent studies (after e.g. Patankar, Basu & Alpay 1977 and Demuren 1983). 

This paper deals with the first stages of the bending of a jet in a weak cross-wind. 
The first important effect of the weak wind occurs when the radial velocity inside the 
jet, much smaller than the axial one, becomes comparable to the wind velocity. 
Since, in the absence of any wind, the velocity in the interior of a fully developed jet 
would decay as the inverse of the distance to the jet origin, the condition above 
defines the characteristic length of a distortion region where the transverse structure 
of the jet is strongly modified by the wind and its cross-section ceases to be circular. 
For the present purposes, the wind will be considered weak if the distortion region 
is long compared with the development region of the jet. Our goal is to describe the 
flow in that distortion region under these conditions. 

The most prominent feature of this flow is the appearance of axial vorticity, which 
arises from the reorientation of the main azimuthal component and very soon 
becomes an essential element of the dynamics. Another characteristic feature is that 
the axial velocity remains large compared to the transverse velocity and therefore 
the deflection of the jet is small. Still another feature, associated to the slenderness 
of the jet, is that the axial pressure gradient and the axial diffusion are negligible and 
the conservation equations become parabolic in the direction of the jet. The analysis 
of the distortion region describes only the initial stages of the bending process. 
However, the asymptotic results obtained for the shape of the cross-section and for 
the distribution of vorticity give a clue to what the subsequent evolution may be. 

The analysis is applicable to laminar jets and, in a more qualitative sense, to the 
mean flow of turbulent jets, if the simple mixing-length model with constant eddy 
viscosity is considered an acceptable approximation. Certainly, this is not the case in 
the development region, nor it is true for low jet-to-wind velocity ratios, for which 
most of the evolution occurs within a short distance from the outlet. Furthermore, 
as the jet deflects appreciably, the eddy viscosity distribution changes. Nevertheless, 
the constant-eddy-viscosity model gives quite acceptable results for the mean flow of 
a fully developed turbulent jet in the absence of crossflow, and, in a sense, when the 
distortion of the cross-section is moderate and evolves smoothly, the flow we consider 
is a perturbation of that flow. On this basis, we expect the results of the constant- 
viscosity model to retain a t  least a qualitative meaning for turbulent jets, in the 
nature of an analogy. The above justification breaks down far from the origin, but 
by then, as we shall see, the effect of turbulent diffusion is confined to a narrow strip, 
and new relevant length and velocity scales can be identified, leading to a new 
turbulent viscosity with which the qualitative description can be continued 
somewhat farther downstream. 

While it is a rather extreme case, the limit of weak cross-wind is amenable to a 
fairly general analysis, which is not possible for moderate or small jet-to-wind 
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velocity ratios, of greater practical interest. Thus, among the large amount of work 
devoted to these latter cases, Moussa, Trischka & Eskinazi (1977) and Andreopoulos 
(1982) measured the velocity, jet contours, and turbulence intensity near the jet exit, 
pointing out the important role that the geometrical configuration of the boundaries 
and the velocity profile inside the pipe play in the mixing and development process. 
Sykes, Lewellen & Parker (1986) carried out a numerical simulation of the three- 
dimensional mean flow of a round turbulent jet with a low velocity ratio, showing 
that turbulent diffusion smears out the azimuthal vorticity in the fore and aft regions 
of the jet, and the vorticity left on the sides of the jet evolves very rapidly into an 
asymptotic far-field configuration without much vorticity reorientation. 

2. Orders of magnitude and formulation 
Consider first a round jet discharging with uniform velocity U, from a circular 

orifice of diameter D, into a space filled with stagnant fluid of the same density as the 
fluid in the jet. Assume that the Reynolds number Re = U,D,/v is moderate enough 
for the flow to go through the development region, of length O(ReD,) ,  before any 
instability had had time to grow to an appreciable size. After the development 
region, the flow attains the well-known Landau’s self-similar solution for a 
point source of momentum (Batchelor 1967), dependent only on v and the 
injected momentum flux F = +.nqD?, which is conserved along the jet. For 
p = 8v/(3F/n)i  = 16/(1/3Re) 4 1 ( p  being the angle at which the streamlines come 
closest to  the axis), this solution is 

Here = r/& r is the distance to the axis of the jet, z is the distance along the axis, 
and u, and UI are the corresponding components of the velocity. Note that 
u,/w = O(p) 4 1 as a consequence of the slenderness of the jet. For a given z ,  the 
radial velocity is positive for 7 < 1, taking its maximum value v,. = v/(pz) at 
7 M 0.414, and negative for 7 > 1,  taking its minimum value u, = -v/(pz) at 
7 M 2.414. For 7 B 1 u, = -4v/(/3zy) = -4v/r, which is the velocity field of a two- 
dimensional sink. The jet entrains outer fluid that is accelerated vertically at the 
expense of the momentum of the interior fluid. The total entrainment rate is 
me = - limT+a 2.nrw, = 8nv, independent of z. 

For a turbulent jet, the development region is about six diameters long and the 
fully developed jet is a cone of small angle, 2p M 10.5”, determined experimentally. 
On dimensional grounds, the mean velocity of the fully developed jet is of the form 
V = (u,, w) = ( F i / z ) f l r / z ) ,  while, writing the Reynolds shear stress in the form 

= v,aw/ar, the turbulent viscosity must be vt = Ir”%(r/z). The simplest closure, 
giving reasonable results for the mean flow, is to assume a constant v,. Then (1) holds 
for the mean velocity with v, playing the role of the viscosity, and the above relation 
between /3 and ut yields 

Let us consider now a jet discharging into a uniform stream of velocity U, 4 U, 
perpendicular to the initial direction of the jet. This transverse stream will influence 
the flow in the core of the jet a t  heights such that its velocity and the maximum 
radial velocity induced by the jet in the absence of cross-wind are comparable. 
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Assuming that 01 = U,/U, is sufficiently large, this will happen in the region of 
developed flow (where (1) holds and v, - 4v/Pz), at  a height 

x = 0(42,), with z ,  = ( . \ / 3 /16 )d , ,  (3) 

which defines the distortion region. Since w/U, = O(l/P) 9 1 in this region, the jet 
still moves in its initial direction with only a small deflection of order /3. Also, the 
characteristic size of the cross-section is much smaller than z, and the jet is a slender 
structure, although no longer axisymmetric. We note that the momentum flux F is 
the only feature of the discharging flow appearing in the distortion region. Hence, 
other (non-uniform) exit velocity profiles are acceptable as far as the distortion 
region is concerned, replacing the above value of F by the appropriate expression of 
the momentum flux and using U, = (@/xD,2); in the definition of a. This reflects the 
fact that, although the process of redistribution of the azimuthal vorticity in the 
development region of the jet depends on the exit velocity profile, the end result is 
still given by (1).  We may also note that the radial jet velocity and the wind velocity 
do also become comparable below the distortion region for r = O(v/U,),  but this 
corresponds to points outside the jet, while inside the jet the cross-wind is only a 
small perturbation to the axisymmetric solution ( 1 ) .  This two-region structure will 
be analysed in $3. 

In the above scenario, the influence of the wind does not represent a drastic OF 

abrupt change of the inner structure of the jet, but rather a cumulative perturbation 
whose effect appears in the ‘long term’. I n  the application t o  turbulent jets, the 
expression (2) for the turbulent viscosity will be retained, as an approximation, in the 
distortion region. This is done on the grounds that (i) the flow has a well-defined main 
direction and does not differ drastically from an axisymmetric jet, and (ii) the gross 
features of the mean flow depend on factors other than an accurate modelling of the 
turbulence. None of these conditions is satisfied for lower jet-to-wind velocity ratios, 
and the analysis of those flows is far more complex than the present one. In 
particular, the possibility of studying the mean flow without a detailed analysis of 
the turbulence structure is lost. As mentioned in $ 1 ,  the results of the present 
analysis are intended to be applicable to turbulent jets only in a qualitative sense. 

For the estimate (3) to hold, 42, must be larger than the development region of the 
jet, which poses a lower bound to the velocity ratio (a  > 15 for a turbulent jet). This 
may be a strong restriction. For smaller values of a, which include many cases of 
practical interest, the distortion of the jet cross-section begins in the development 
region of the jet, and the analysis given below is not strictly applicable. However, the 
conclusions about the asymptotic behaviour for z / z ,  large are probably valid. 

The estimate (3) and the formulation that follows rely on the assumption that no 
instability of the initially circular jet grows t o  finite size over a distance shorter than 
42,. This condition restricts the range of applicability of the analysis for laminar 
flows, establishing bounds for the Reynolds number and the velocity ratio. A local 
linear stability analysis for parallel velocity profiles mimicking the development and 
fully developed regions (Morris 1976) shows that the flow in the development region 
becomes rapidly unstable, owing to the large vorticity concentration. Perturbations 
can grow downstream for Reynolds numbers above a critical value of the order of 10 
and frequencies below a cutoff value varying like the inverse of the shear-layer 
thickness. The same trend holds for the fully developed flow (I) ,  except that 
axisymmetric perturbations are linearly stable and the critical Reynolds number for 
helical perturbations is now about 37. When the slow divergence of the jet is 
accounted for (Crighton & Gaster 1976; Plaschko 1979), the growth rate of an 
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FIGURE 1. Definition sketch. 

unstable perturbation of a given frequency is seen to first increase, then decrease, and 
finally become negative when progressing downstream. High-frequency pertur- 
bations have a large initial growth rate but they grow only during a shorter period 
than low-frequency perturbations, whereas there is a certain frequency for which the 
accumulated growth is maximum. On this basis, interference between the growth of 
the intrinsic instabilities of a laminar jet and the distortion due to the crossflow can 
be expected to be small for moderate Reynolds numbers and for a range of velocity 
ratios narrowing as the Reynolds number increases (to keep low both the growth rate 
and the accumulated growth). 

Another magnitude of interest is the order of z corresponding to the bending of the 
jet, which occurs when w becomes comparable to the velocity of the wind. As we shall 
see in 334 and 5,  the analysis of the distortion region [ z  = 0(4zw)] leads to the result 
that, asymptotically, w/U, decays as ( z , / ~ ) ~ / l p .  Hence the bending becomes 
appreciable when z = O(z,/@) = O[v/(@U,)]. Note that typically this is not a long 
distance, and therefore the jet bends fairly rapidly, which makes more acceptable the 
stability condition of the previous paragraph. 

Since our aim is to describe the flow in the distortion region, vertical distances in 
the remainder of the paper are referred to zw, except where otherwise is stated 
explicitly. Horizontal distances are referred to Pz,, which is a measure of the jet 
cross-section, and the vertical (w) and horizontal (u, w) components of the velocity are 
referred to U,/P and U,, respectively. The pressure changes inside and around the 
jet will be referred to pV,, and the vertical component of the vorticity to U,/(Pz,). 
In terms of these dimensionless variables, which will be denoted by the same symbols 
used before for their dimensional counterparts, the continuity and momentum 
equations become 

aw v-v+- = 0, ax (4) 

a v  
w-+v.vv = -vp+V"+p--, aZ a22 
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where, with reference to figure 1, 

The last terms of ( 5 )  and (6) will be dropped from this point onwards, being 
negligible for /3 Q 1.  We note that both the vertical pressure gradient and the vertical 
diffusion should be taken into account only for (x, y) = O(z//3), because the structure 
of the flow is no longer slender in this remote region (which need not be analysed 
here). 

Eliminating the pressure gradient between the two components of equation (6)) 
the momentum equations (5)-(6) in the limit p+O can be replaced by 

aW 
w-+v.Vw = v2w, 

a Z  
(7) 

where SZ is the vertical component of the vorticity. 
The boundary conditions far from the jet are 

u - I = v = w = Q = O  for x - t c o ,  (10) 

and the initial (in z )  conditions can be written 

(xu, zv, zw, z20) + (vr8 cos 8, v,, sin 0, w,, 0 )  for z+O, (11) 

where 

These initial conditions express the fact that  the effect of the wind becomes 
negligible and the self-similar solution (1) is recovered for z L 0. 

The limiting problem (4), (7 ) - ( l l ) ,  whose solution we address in the sequel, is free 
of parameters. This problem is closed and does not explicitly contain the pressure, 
which could be determined afterwards using (6) with p = 0. 

3. Asymptotic solution for small z 
In this section we describe the solution of (4), (7)-(11) for z < 1. This corresponds 

to the flow a t  heights above the origin of the jet larger than the length of 
the development region (apz + 1, leaving out numerical factors) but still small 
compared to the length of the distortion region. As mentioned before, two regions can 
be distinguished in this flow; an inner region coinciding with the core of the jet 
[q  = r / z  = O(1) ; z 4 11, where the effect of the wind amounts to a small perturbation 
of the self-similar solution (l) ,  and an outer region [r = O( 1)  ; z < 11, where the wind 
and the sink effect due to the entrainment of the jet dominate the transverse velocity 
field. A finite-length wake develops in this outer region. In what follows, the limit 
7 + 00 in the inner region means z + r 6 1, and the limit Y + co in the outer region 
means 1 6 r 6 z/p. 
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Polar coordinates (r, 8) in the (5, y)-plane will be used in this section, with 8 = 0 
pointing in the direction of the wind. 

3.1, Inner region 

The solution in the inner region can be written as a series expansion, 

where the functions on the right-hand side depend on 7 and 8 only. Writing (4 ) ,  
(7)-(11) in terms of 7, 8, and z ,  inserting the expansions (13) in the resulting 
equations, and collecting terms of like order in z we would find in the first place 
equations for w(-l) and ?I:-') whose solutions are given by (12). The next order yields 
a linear system of equations for w(O), v $ ~ ) ,  vh0), and Q(O), whose coefficients are known 
functions of 7. To cope with the boundary conditions (lo), the solution of these 
equations must be of the form 

(w(o) , v, (0 )  = { ~ ( q ) , R ( q ) l  cos 8, (vp, Q(O)) = W ( q L  @(r)) sin 8, (14) 

where Z ,  R, dj, and 0 satisfy the equations (the prime means derivative with respect 
to 7)  

-7'Z'+(yR)'+dj = 0, (15) 

with the boundary conditions 

R - l = d j + l = Z = O = O  for ~ + c Q ,  (19) 

and conditions of regularity a t  the origin (7 = 0). 

at the origin. For 11 % 1 two solutions are divergent, another behaves as 
Out of the six linearly independent solutions of (15)  - (18), only three are regular 

Z1+8/73, R l +  1 +O(lny/$?), @l+-l+O(ln7/72), 0, = O(I/v5),  (20) 

matching with the lateral wind, and the other three solutions are 

Z, = o(l/q5), R2-+a2/q2+O(1/r4),  @2+a2/q2+O(1/q4), 0, = O(1/q5) ,  (21) 

(22) 
2, + 4 a , / ( d 5  + 2) rq6+', R, + 2 / 5 ~ ~ / 7 d ~ + ~ ,  Q3 -+ a3/7d5+1, 0, = O( l/7d5+,), 

and 

Z ,  = O( l / ~ d ~ + ~ ) ,  R, + u4/qd5+l, cB~ + 4 /5~ , /7"~+' ,  8, + - 4u4/q"'+'. (23) 

The amplitudes u2, a3, and a, of these three modes were determined by a simple 
shooting method devised to kill the two diverging modes. The resulting profiles of 2, 
R,  @ and 0 are plotted in figure 2. These four functions, along with (14), describe the 
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FIGURE 2. Solution in the inner region for small z .  See (14). 

main effect of the cross-wind on the core of the jet. The appearance of 2 can be 
understood as a shift of the jet in the direction of the wind, whereas the negative sign 
of 0 in most of the places corresponds to the sense of rotation that one would expect 
from figure 1 .  Since axial vorticity is totally absent in the basic jet, Q(O) is a direct 
gauge of the effect of the cross-wind. The functions R and @, related to the horizontal 
velocity perturbation, decay more slowly than Z and 8 when moving away from the 
centre of the jet, mostly due to the mode (20). The signs of R and @ in the outer part 
of the jet correspond loosely to the velocity perturbation that one would expect for 
a stream flowing around a solid body, but these signs are reversed for smaller 7. 

Going to the next order in the expansion (13) we would find 

I (24) 
(w(l) > 0, (1) ) = ~ ~ z o ~ v ~ ~ ~ z o ~ v ~ ~ + ~ ~ z z ~ v ~ ~ ~ ~ z ~ v ~ ~  cos2e 

(@,Q(')) = {@zz(v ) ,  @ z z ( v ) }  sin 28. 

We will not write down here the equations for all these functions. Suffice it to say 
that the behaviour of the axially symmetric parts of w(l) and up) are 

Z,0+2/72, RzO+-8lnv/v for v+co. (25 )  

R,, in particular gives the first non-zero correction to the jet entrainment rate 

2n 

me = -zlim [ rp,d/3, 
~ + o o  J O  

because all the other terms in (14) and (24) integrate to zero. The contribution of R,,, 
however, diverges as 16nz21nv, reflecting the lack of uniform validity of the 
expansion (13). 

3.2. Outer region 

The radial velocity in ( 1 )  decays as - 4 / q  for 7 --f co, becoming of the order of the 
wind velocity for 11 = O(z-l), or r = O(1). At the same time the asymptotic expansion 
for the axial velocity in (13) breaks down because the three first terms all become of 
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order z3 (see (13), (14), (20), (24) and (25)). The appropriate expansions for the 
variables in the outer region r = 0(1) ,  accounting for the matching conditions with 
the inner one, are 

with 

(w, v,, vg, a) = (0, ViO’, VjO), 0) 

sin 8 + v~‘J), 0) 
121nx 

+z2 0,-+- cos 8+ Vy ) ,  - ( g : z  121nz r2 r2 

The vertical vorticity is of order d 5 + l  in the outer region, too small to influence 
the velocity field at order 2,  which is therefore irrotational. The logarithmic terms 
in (26) arise from the matching; see (20) and (25). Further logarithmic terms appear 
also at  the next order ( x 3 ) ,  but these are not written explicitly; they can be considered 
as included into VJ3) and v). 

The variables Vj2) and VJ2) satisfy 

(V,?)’, Vj2)) = Vy, with V2y = - 3 W 3 ) ,  (28) 

whereas the leading order of the axial velocity satisfies the linear equation 

with the boundary condition 

and the matching condition 

Here 

W3)+0 for r+m, 

W‘3’ = g(r,  0) +f+o( 1) for r + 0. 

(32) + 
and f is an unknown constant that determines the flux of W3) across any contour r 
enclosing the origin : 

(33) 

8 8cos8 2(1+coS28) c o s e + ~ ~ o s 3 ~  i cos2e cos4e +-+-+- 
r 8 6  24 ’ r2 

g(r,  0) = -+- + 
r4 r3 

q5 =I (V(0)W(3)-VW3)).nds = -8nf. 
r 

We begin discussing the solution near the origin. The asymptotic expansion for r + 0 
or any even (in 0 )  solution of (29) begins as rAn cos n0, with A, = - 2 & (n2 + 4); and n 
integer. Note that the first term of g(r,  8) in (31)-(32) corresponds to n = 0,  
(A,  = 0, -4), whereas the rest of g(r ,  8)  are the next four terms of the expansion of 
the solution beginning as 8/r4. These are computed straightforwardly from (29). 
Solutions with n -t. 0 and the minus sign in front of the square root are ruled out by 
the matching condition because they would diverge faster than l/r4 for r+O. The 
companion solution with the plus sign in front of the square root may contribute to 
W3) as an eigenfunction if it  happens to go to zero for r+  00, which is unlikely in 
general. In any event, such a solution with n + 0 would give a zero flux across any 
circuit enclosing the origin and, therefore, only the solutions with n = 0 contribute 
to the flux (33). In  our case, the coefficient of l/r4 in (31)-(32) is already determined 
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FIGURE 3. Contour lines of the vertical velocity in the outer region for small z .  

by the matching condition and the flux can only be modified by acting on f. But, 
=f being an exact solution of (29), this freedom disappears when W(3) is forced 

to vanish at infinity, and the flux of W3) is determined uniquely. 
For r % 1 the effect of the sink is negligible and (29) becomes Oseen's equation in 

first approximation. W(3) decays exponentially to zero, except in a wake, 
c = Or; = O(l) ,  where the leading term of its asymptotic expansion is 

for some integer m 2 0. Out of these possible behaviours, only the first one (m = 0) 
yields a flux different from zero, q5m=o = 2nh. Hence we must set a = -4ny. 

Equations (29)-(31) were integrated numerically, yielding a = 0.48, f =  -0.068. 
For the numerical integration, W(3) was decomposed as W(3) = Ws+ W,, where 
W, = g(r ,  O)/(l + ~ r ~ ) ,  with g(r ,  0 )  given by (32) and K constant, is the singular part of 
the solution. W, is then regular at the origin and vanishes a t  infinity. The equation 
for W, was written in conservation form, discretized using centred finite differences, 
and solved with a pseudotransient method. The linear relation between WE and 
aW,/& that results from eliminating u between (34) and its first derivative was used 
as a far-field boundary condition. 

Some isolines of W(3),  revealing the shape of the solution, are plotted in figure 3. 
The overall structure of the flow, with the velocity field (27) due to a sink in a uniform 
stream and the wake (34) is in fair agreement with the flow visualizations of Werl6 
(1974, 1990), carried out for moderate values of T .  

Vertical convection was neglected in (29) because w a w p z  = O(z5),  whereas 
v-Vw = O(z3)  for r = O(1).  However, owing to the slow decay of W3) in the wake 
(w = O(z3/r$ for 6 = 0(1)), both terms become of the same order when r = O ( Z - ~ ) ,  
6 = O(1). This determines the limit of validity of the expansion (26), and in particular 
the termination of the wake where (34) holds, for vertical convection carries the 
material particles upwards before they have time to move horizontally over 
distances much larger than O ( Z - ~ ) .  Such a mechanism prevents an infinite wake. As 
a matter of fact no trace of the jet is left sufficiently far downstream for small values 
of 2. 

The termination of the wake could have been predicted on the grounds of internal 
consistency too. In  fact, by integrating the continuity equation (4) over a large circle 
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of radius R ,  >> 1 with the velocity given by (26)-(SS), we find that the mass flux 
entering the boundary of the circle increases with R, as 6&az2R,, due mainly to the 
entrainment of the wake. Such an entrainment rate would not be attainable if the 
wake extended down to infinity: there is no solution of (28) with Via) and Vj2) going 
to zero at infinity when W(3) is given by (34) with m = 0. (Actually the solution of 
(28) outside the wake is 9, = (3az2/7&) r(1n r cos 8- 8 sin 0) for r >> 1 ) .  As a consequence, 
the flow required to feed an infinite wake would have to come from regions above and 
below the section where it is actually entrained, which is inconsistent with the 
approach leading to (4), (7)-(11). 

Note that, for a turbulent jet, the result (34) depends on the assumption that the 
turbulent viscosity is constant. This assumption is about as reasonable for the wake 
as it was for the jet, for the product of the velocity (34) (decaying as 1/ri) and the 
width of the wake (growing as r;) remains constant. Note also that if a = 0 the 
leading order of W3) in the wake would have corresponded to  m 2 1 in (34), which 
leads to a t  most a logarithmically divergent entrainment. Then the expansions (26)  
would have been uniformly valid far downwind the jet. 

Finally, for completeness, we sketch briefly the structure of the flow in the 
outermost region [x = O ( X - ~ ) ) , ~  = O ( X - ~ ) ,  w = O(z5)J. The vertical momentum equ- 
ation becomes 

aw aw a=w 
ax ax ay2’ 

w-+-=- 

and its solution is of the form w = a2z5F(X, Y ) ,  with X = a2z4x, Y = az2y, and 

F+O for Y+-foo, 

F = exp ( -  y2/4X)/Xi for X + O .  

(35) 

(37) 

(38) 

The particle paths would be inclined straight lines in the absence of diffusion. 
Because of the effect of the diffusion in the y-direction these paths bend downwards 
near the symmetry plane of the jet and upwards outside. For large values of X the 
solution of (36) takes the form F ( X , Y )  = G ( p ) / X ,  where p = Y / X i  and 
G 2 - G + p F / 2 - G  = 0. 

4. Numerical results 
Continuing our analysis of (4),  (7)-(11), we describe now the numerical solution 

in the bulk of the distortion region [ z  = O(l)]. For the purpose of the numerical 
computation, equation (8), defining the vorticity, is replaced by 

which is a combination of (4) and (8).  

4.1. Numerical method 
Equations (4), (7), (9)-(11) and (39) were solved for w, u, v, and Q, with (7) and (9) 
written in conservation form. Only the half-space y > 0 was considered, with the 
symmetry conditions v = SZ = aw/ay = au/ay = 0 a t  y = 0 (one of them is redundant). 



A n  incompressible j e t  in a weak crossjlow 85 

33 

1 w2 dx dy 

32 

31 

0 4 8 12 16 

FIGURE 4. Numerically evaluated vertical momentum flux for half of the jet as a function of z. 
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Homogeneous Neumann conditions were applied for w and Q a t  the outer boundaries 
of the computational domain, which was a rectangle in the (x,y)-plane. For u 
Dirichlet conditions were used upstream and Neumann conditions at the other 
boundaries. (For a more accurate treatment, the Poisson equation (39) was also 
approximately solved outside the computational domain using asymptotic wake-like 
expressions for w and Q. This yields a relation between u and its normal derivative 
at the outer limit of the domain, which was used as a boundary condition for the 
solution inside the domain. However, this procedure required under-relaxed 
iteration, slowing down drastically the convergence rate.) 

Initial conditions for the numerical integration are provided by the asymptotic 
solution of the previous section. The key elements of this solution affecting the 
evolution of the flow are the base self-similar velocity profiles, the axial vorticity 
induced by the wind inside the jet, and the uniform wind velocity outside. 

The equations were discretized using finite volumes and a staggered grid, with an 
implicit (in z )  centred representation for the x- and y-derivatives. The discrete 
problem was solved with a pseudotransient and AD1 method for the vertical 
momentum and vorticity equations. One step of the artificial time involves: (i) a 
couple of AD1 sweeps for (7 )  and (9) to update w and SZ, respectively; (ii) solution of 
the Poisson equation (39) for u by SIP iteration; (iii) direct integration of the 
continuity equation (4) to find v. These three stages were repeated cyclically until a 
converged stationary solution was achieved. Then z was advanced another step. 

Since the size of the cross-section grows rapidly, we found it convenient to switch 
to the shifted and strained coordinates (x-yz')/zT and y/zT, with piecewise constant 
y, CT, and 7 chosen to fit the grid to the evolving jet as closely as possible. 

Figure 4 shows the total vertical momentum flux, sw2 dz dy, which should be equal 
to Z5x/3 x 33.51, independent ofz. This quantity was used as a test on the numerical 
computations performed with different grids, domain sizes, and implementations of 
the far-field boundary conditions. The low value of the momentum flux during the 
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x 
FIGURE 5. Contour lines of the vertical velocity and horizontal velocity arrows, for different 
horizontal sections. (a)  z = 5.20: 0 < w < 1.43; ( b )  z = 9.85: 0 < w < 0.70; ( c )  z = 15.73: 
0 < w < 0.33. Equispaced lines. 

early stages of the computation is partially an artifact introduced by the evaluation 
of this quantity from the numerical data when the size of the jet is very small and, 
more importantly, an effect of numerical diffusion, because the grid is comparatively 
coarse during these stages. The momentum flux decays again for large values of z 
owing to the finite size of the computational domain. This decay defines a limit 
beyond which the numerical results are no longer reliable. Another limit, related to 
the evolution of the vorticity, will be discussed in the next subsection. 

4.2. Results and discussion 
Figures 5 to 8 display results of the numerical computation for different values of x .  
In  figure S(a-c) isolines of the vertical velocity show the transition from the round 
growing jet for small z ,  where the entrainment flow is much stronger than the wind, 
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FIGURE 6. (a) Maximum vertical velocity and location of the maximum vertical velocity as 
functions of z. Dashed line represents the maximum vertical velocity for the axisymmetric jet. ( b )  
Vertical mass flux for half of the jet as a function of z. Dashed line represents the mas8 flux for half 
of the axisymmetric jet. 

to  the characteristic kidney-shaped cross-section for larger z. The long ridge in figure 
5(c)  suggests that the jet cross-section is becoming a relatively narrow strip. The 
maximum axial velocity in each section is attained at  a point x&) of the symmetry 
plane, defining the trajectory of the jet. Both x,(z) and the maximum velocity are 
represented in figure 6 ( a )  as functions of z. For comparison, the dashed line in this 
figure represents the maximum vertical velocity for the axisymmetric solution (1)  
(wmm = 8/2 in non-dimensional terms). Figure 6 ( b )  shows the mass flux for half of the 
jet, sw dx dy, as a function of z. The dashed line (4~2) corresponds to the axisyrnmetric 
solution, the difference being o(z2) for z + 1, according to the results of $3. This 
quantity can be evaluated accurately only for moderate values of z, because an 
important contribution to the flux comes from far regions of the cross-section, which 
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FIGURE 7. Contour lines of the vertical vorticity for different horizontal sections. (a) z = 5.20: 

Equispaced lines. 
-0.234 Q G' < 0.023; ( 6 )  z = 9.85: -0.168 < SZ C 0.054; (c) z = 15.73: -0.111 Q SZ < 0.077. 

are affected by the finite size of the computational domain when z becomes large. On 
the basis of this limited information, the mass flux seems to increase at  a rate 
consistent with the asymptotic description of the next section. Note that the 
entrainment rate is the derivative of the mass flux. 

The arrows in figure 5 represent the horizontal components of the velocity. The 
effect of the entrainment is observable for moderate values of z. The apparent rate 
of expansion (au/ax + au/ay) attains its largest negative values in the rear part of the 
jet, reflecting a high local entrainment rate. In  the fore part the rate of expansion 
even becomes positive, but this must be attributed to the incipient inclination of the 
jet commented on below. 

The signature of the vertical vorticity in figure 5 is more visible behind the jet, in 
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Z 
FIGURE 8. Maximum vertical vorticity and location of the maximum vertical vorticity as 

functions of z. 

the region sheltered from the wind, and appears still more clearly in a plot of the 
velocity relative to the wind (u- 1, v) for moderate x (not presented), in which a 
recirculation region and a local velocity minimum are clearly visible at about the 
same location as the vorticity maximum depicted by the isolines of figure 7 (b ) .  The 
sheltering effect of the jet (i.e. of the region where w =k 0 )  weakens as z increases, and 
the axial vortex pair gradually takes over in counteracting the wind. 

Figure 7(u-c) shows the evolution of the vertical vorticity. The vorticity 
distribution is initially symmetric relative to the y-axis (see (14)) but very soon loses 
this symmetry and is convected by the wind. Vertical vorticity arises from the 
reorientation of the azimuthal component in the distorted jet and already exists in 
the early stages of the jet development. As the evolution proceeds, the vorticity 
begins concentrating in the same layer as the axial velocity, where it is generated. 
However, before long, a substantial amount of this vorticity is seen to leave the layer 
by the rear tips, leading to a couple of contrarotating vortices bigger than the jet and 
located behind it. Since the vertical velocity is negligible over most of the region 
occupied by the vortices, the motion there is two-dimensional and the vortices stand 
against the wind under the action of their own induced velocity. 

The maximum value of the vorticity in the contrarotating vortices and its position 
are given in figure 8. As can be seen, the vortex pair grows very fast with increasing 
z,  and the vortices hit the rear limit of the computational domain fairly soon, when 
the jet is still moderately small. It turns out that this is the strongest restriction on 
the values of x attainable numerically, for, from this point onwards, only a fraction 
of the vortices is left to offset the wind and the jet cross-section becomes artificially 
distorted as a consequence. This relatively clear failure of the numerical scheme 
proves the important role of the contrarotating vortices. Thus, computations carried 
out with a longer and narrower domain show a jet cross-section slightly more straight 
and aligned with the y-axis than that of figure 5 (c). 

4 F L M  249 
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Although the standing vortex pair is a prominent feature of this flow, it has also 
been reported (e.g. Moussa et a2. 1977) that the stationary vortices may become 
unstable, giving rise to alternating shedding. In  the present computation this 
possibility is precluded by the symmetry condition at  the central plane. However the 
pseudotransient iteraction failed to converge in some cases for large values of z, and, 
in those cases, inspection of the vorticity field revealed large patches of vorticity 
moving downwind to the boundaries of the computational domain. 

The deflection of the jet in a vertical plane begins to affect the appearance of the 
horizontal sections when x increases. The inclination angle, being still small, is 
sufficient for the axial velocity to have a horizontal component of the same order as 
the wind velocity, and for the vorticity normal to the jet direction to have a vertical 
component of the same order as the axial vorticity. These features are reflected in 
figures 5 (b ,  c )  and 7 (b ,  c )  by the presence of a large x-velocity in the central core of 
the jet and of a positive vertical vorticity (for y > 0) in the leading part of the jet 
wing. (Although, according to the interpretation given in the next section, not all the 
positive vorticity in figure 7c  would be due to this effect.) As a consequence, some 
care is required to assess the axial vorticity distribution from inspection of figure 7, 
as the vorticity in the region occupied by the jet (w =I= 0) is contaminated by the 
aforesaid effect. Such cross-projection effects remain in the subsequent evolution of 
the jet, for the growth of the inclination angle and the decay of the axial velocity 
occur at the same pace. Cross-projection effects demonstrate, on the other hand, that 
the ascending motion of the fluid inside the jet and its horizontal shift by the action 
of the wind are equally important in the dynamics of the jet. 

Additional computations were carried out with initial velocity profiles simulating 
the flow in the development region (Morns 1976) instead of the condition (11). For 
a laminar jet, this simple change extends the range of validity of the results to 
slightly lower velocity ratios, for which the distortion has already begun in the 
development region. (For a turbulent jet the model of constant eddy viscosity is 
inappropriate in the development region.) To the limited extent that these 
computations were carried out, the results show the same trends commented on 
before. 

5. Asymptotic structure for large z 
The numerical results of the previous section give no conclusive description of the 

asymptotic solution for z 9 1. These results will be used now as a guide, in 
combination with order-of-magnitude estimates based on general properties of the 
conservation equations, to try to deduce as much information as possible about the 
nature of the asymptotic solution. For brevity, only an attempt at scaling is 
presented here, and two possible variations are briefly discussed in an Appendix. This 
section and the Appendix have a more qualitative character than the rest of the 
paper, and the methods applied here will not allow a decision among several 
apparently likely possibilities. Nevertheless, a reasonably complete description of the 
asymptotic state, which is crucial to the understanding of the key features of this 
flow, can be achieved by the present qualitative methods. 

The former convection-diffusion balance of the axisymmetric jet, yielding 
transverse velocities of order 1/z ,  clearly breaks down as z increases, for the 
horizontal wind acquires a growing influence and such a round jet would simply be 
swept away. As commented before, the jet develops axial vorticity in the form of two 
contrarotating vortices, and (backed by the results of the previous section and the 
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FIGURE 9. Sketch of the jet cross-section for large z. 

extensive experimental evidence available) we may conjecture that a new balance 
sets in for large enough values of z ,  in which the horizontal velocity induced by the 
axial vorticity distribution counteracts the wind. 

Defining the jet as the region where w is appreciably different from zero, figure 5 (c) 
shows that the jet cross-section becomes an elongated strip for large values of z, 
which was to be expected as a result of the horizontal strain generated by the 
contrarotating vortices. Diffusion normal to this strip is the only mechanism left in 
(7) to  counteract the straining, and it must therefore play a role in the dynamics. 

Figure 9 is a sketch of the cross-section of the jet and the vortices for z + 1. We 
denote by I ,  6, and w the characteristic (non-dimensional) values of the length and 
width of the jet cross-section and the vertical velocity, respectively. The way these 
quantities scale with z follows from the following considerations : 

(i) The total vertical momentum flux is conserved along the jet. Hence w216 - 1. 
(ii) The fluid inside the jet moves horizontally (sidewise) with a velocity of order 

one (the wind velocity in non-dimensional variables) and vertically with a velocity 
of order w. Hence, the horizontal and vertical displacements after a time t verify the 
relations 1 - t and z N wt, leading to wl- z. 

(iii) Convection along the layer and diffusion across are both relevant to the flow 
inside the jet. Hence cY2 - zlw.  

These three relations yield 

z = 0(24), 6 = o ( z ~ ) ,  w = 0 ( 1 / ~ 3 ) .  (40) 

Let us consider now the axial vorticity distribution. The contrarotating vortex 
pair behind the jet (represented by the twin recirculating cells in figure 9) would 
extend over a length ZQ = O(l) ,  the jet itself being a narrow strip on the periphery of 
the vortices. Since the motion outside the jet is strictly two-dimensional, the 
vorticity should be uniform in each member of the pair (52 = f 52, = O ( Z - ~ ) ,  say), 
which would then be one of the limiting members of the family of Batchelor-Prandtl 
vortices studied by Pierrehumbert (1980) (see Saffman & Tanveer 1982 for a correct 
description of this limiting flow), for which Q,Z, = 1.84. 

The vortices are continuously fed with vorticity coming from the jet, which makes 
up for the losses by diffusion through the outer boundary of the vortices and through 
the symmetry plane (y = 0 in figures 5 and 7). The dotted lines in figure 9 sketch the 
diffusion layers around the vortices and the beginning of the wake. Note that, from 

4-2 
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the balance of production [O(w/6z)] and convection [O(wQ/z)] in (9), the peak 
vorticity is of order 1/z2 $ Q0 inside the jet (as clearly reflected in figure 7 c ) .  
However, vorticity of both signs coexists here and the (horizontal) velocity jump 
across the sheet is only of order 1/z2, as we shall see below. 

Another magnitude of interest is the overall downwind shift (xo in figure 6a) .  This 
can be estimated from the balance between the horizontal momentum entrained by 
the jet from its origin to the present height and the horizontal momentum flux 
crossing the normal cross-section of the jet, which is a reflection of the jet inclination. 
(Or, in other words, by establishing that the jet can sustain a continuous ingestion 
of horizontal momentum both because it is curved and has momentum flux along it.) 
Since the entrainment rate is me = 0(16w/x) = O(z2)  (from the continuity equation) 
and the velocity outside the jet is of order one, the first quantity is of order z3, 
whereas the second one is O[w2SZ(xo/z)]. Hence 

xo = o(z~) ,  (41) 

which is in good agreement with the experimental results of Kamotani & Greber 
(1972),  and many others since then, on the trajectory of a turbulent jet in a cross- 
wind. The comparison, however, should be taken with caution, for the experimental 
results refer to the region of finite deflection of the jet. 

The curvature of the jet in a vertical plane is of order x o / z 2 ,  leading to a pressure 
jump Ap = O[w2(xo / z2 )  61 = O(1/z2) to counteract the ‘centrifugal’ force. This is also 
the order of the velocity jump across the sheet. The pressure drag, O(ApZ) = O ( z 2 ) ,  is 
of the same order as the rate of entrainment of momentum estimated in the previous 
paragraph, and, therefore, both effects contribute to the bending of the jet. 

Finally, consider the overall horizontal momentum balance for the flow outside the 
jet between two horizontal planes a unit distance apart. As can be easily verified, this 
balance states that  the horizontal momentum imparted by the wind to the jet per 
unit length by both pressure drag and entrainment of momentum is equal to  the sum 
of the horizontal momentum carried by the mass entrained by the jet per unit length 
when that mass moves with the velocity of the wind plus the defect of horizontal 
momentum in the wake. This latter term can be easily estimated because the velocity 
defect immediately downstream of the vortices (in the dotted region to the right of 
figure 9) is of the same order as the velocity jump across the jet ( l / z z )  and the 
thickness of the wake is here of order 6. Hence, the defect of momentum is of order 
one, much smaller than the other terms in the overall balance mentioned above. We 
may also note that some vertical momentum is lost by the wake, which was not 
accounted for in (i) above. However, the very fact that  this fluid departs from the 
main vertical stream indicates that  its remaining vertical momentum is com- 
paratively small. This loss of vertical momentum flux may contribute to the decay 
of sw2 dz dy observed in figure 4. Nevertheless, as commented on in $4, the main 
cause of the actual decay of the momentum flux in the computations for large z is 
thought t o  be the limited size of the computational domain, whose boundary is 
nearly hit by the growing jet, irrespective of the importance of the wake. This 
situation is difficult to avoid, given the fourth-power growth predicted by (40)-(41) 
for the size and the deflection of the jet. 

Provided that a solution of this type exists, the angle of inclination of the jet to 
the vertical would become of order one when the axial velocity given by (40) decays 
to values of the order of the wind velocity (i.e. when w = O(p) in non-dimensional 
terms). This happens for z = O(l/@), as was already advanced in $2,  and, by then, 
both the downwind shift of the jet and the size of the vortices would be comparable 
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to the vertical distance from the origin (cf. the factor ,&' in the definition of the 
vertical length and velocity scales above (4)-(6)). At this point, the vortices would 
no longer be slender structures and the formulation of $2 breaks down. 

The subsequent three-dimensional evolution ends up aligning the jet and the 
vortex pair with the free stream. Assuming that the flow in the far field is self-similar 
and that the only memory left of the injection conditions is the value of the 
momentum flux, Durando (1971) and Broadwell & Breidenthal(l984) conclude that 
the jet penetration distance and the vortex spacing vary in this region with the 
downstream distance raised to one third. Even though the transition to this terminal 
state may be very complex, the region of fully three-dimensional flow cannot be 
much larger than z,//$, because the circulation of the vortices, built up during the 
two-dimensional stage, is not sufficient to keep the jet from bending once three- 
dimensional effects come into play. 

For a turbulent jet, the assumption of constant eddy viscosity is the weakest point 
of this analysis. A more realistic assumption would perhaps be vt = O(w8). 
Introducing this expression into the estimates a t  the beginning of this section, we 
would find the modified scaling 

and vt = O(l/x). At any rate, neither these nor the scalings (40)-(41) are intended to 
be more than qualitative results. Our aim is to  describe general features of the flow 
rather than the distributions of turbulent magnitudes. In  this respect, we note that, 
since the only effect of the Reynolds stresses is to transfer momentum across the thin 
layer, the overall features (mainly the existence of the thin layer itself) might be 
relatively independent of how this transfer occurs. 

6. Conclusions 
The flow corresponding to the incipient bending of a jet under the action of a weak 

transverse wind is amenable to a simplified parameter-free formulation if the 
turbulent viscosity is assumed to be constant. 

The asymptotic analysis of the early stages of the jet evolution, when the 
entrainment velocity inside the jet is still large compared with the wind velocity, 
shows that axial vorticity appears in the jet in the form of two contrarotating fore- 
and-aft-symmetric vortices growing linearly in size and strength along the jet. The 
increment of the jet entrainment rate due to the cross-wind grows roughly as the 
square of the distance along the jet during these early stages. I n  addition, a finite- 
length wake exists which is responsible for a larger entrainment. This wake shortens 
as the jet evolves, merging with the jet when its transverse velocity becomes 
comparable to the wind velocity. 

The cross-section becomes appreciably distorted in the region where the transverse 
velocity of the jet and the velocity of the wind are of the same order. By then, the 
deflection of the jet is still small because the axial velocity is larger than the wind 
velocity. The equations describing the flow are solved numerically taking advantage 
of the simplifications due to the slenderness of the jet. The solution shows an 
incipient deflection of the jet in the direction of the wind. The cross-section grows and 
acquires an elongated shape, with axial vorticity concentrated inside and also spread 
over two larger contrarotating vortices outside the jet. Eventually this vorticity 
dominates the transverse motion outside the jet. 

An order-of-magnitude analysis leads to an asymptotic description of this latter 
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stage in terms of an outer planar flow in cross-sectional planes, and an inner 
boundary-layer type of flow in the interior of the jet. The outer flow is driven by the 
vorticity concentrated in the large contrarotating vortices, which are fed with 
vorticity shed by the jet. The inner structure of the jet, determining the outflow of 
vorticity, depends in turn on the outer flow. The relative importance of pressure drag 
and entrainment of momentum is discussed. 

We wish to thank A. Lifian for many invaluable discussions and advice. 

Appendix. Alternative asymptotic models 
In this appendix we set up the scalings for two possible variations of the 

asymptotic structure discussed in $5. As mentioned in the text, it  seems that simple 
order-of-magnitude estimates do not suffice to decide what alternative is actually 
realized. 

The idea that the jet is a thin layer extended on the periphery of the vortices is 
suggested by the appearance of figures 5 (c )  and 7 (c). However, it might also happen 
that this layer rolls up at  higher values of x ,  becoming a spiral inside the vortices, as 
sketched in figure lO(a). Here we discuss how the previous estimates should be 
modified in this case. The considerations (i)-(iii) leading to (40) still hold true. The 
size ( I D )  of the vortices, however, becomes smaller than 1 in (40). To estimate this size 
we note first that the mean distance between turns of the spiral in figure 10(a)  is of 
order Zk/Z. Since the entrainment flux required to feed the jet (me = O ( 2 ) )  must flow 
through the ‘channels’ left between adjacent turns, the velocity induced by the 
entrainment is of order me/(Z&’Z). Further, we note that this velocity must be of the 
order of the wind velocity, for otherwise it would have no influence on the dynamics, 
and the recirculating flow inside the vortices would continuously increase the number 
of turns of the spiral (as if it were a passive surface), which is inconsistent with having 
a steady flow. Hence, 

Using the scales (40), (41), and (A I ) ,  the curvature radius of a typical streamline 
inside the jet (i.e. one completing at  each height a number of turns comparable to the 
total number of turns of the spiral at that height) can be seen to be of order l /x3,  
being due mainly to the rolling-up of the jet cross-section. The pressure jump across 
the sheet required to cope with the ‘centrifugal’ force associated to this curvature is 
Ap = O(l/z),  larger than that found in $ 5 .  This pressure jump could give a drag 
O(Ap2) = O(z3) ,  much larger than the entrainment of horizontal momentum, and a 
downwind shift 

zJa = o [ ( ~ , z ) ~ I  = 0(z3). (A 1 )  

x0 = 0 ( ~ 5 ) .  (A 2) 

(This large shift implies that the fluid inside the jet is moving horizontally much 
faster than the wind, as a consequence of the inclination of the jet.) However, such 
situation need not be realized, for the vortices and the spirals might be fore-and-aft 
symmetric and the pressure drag would then be much smaller than the previous 
estimate. Whether or not this is actually the case cannot be decided without more 
quantitative analysis or computations. 

Finally we mention a second alternative model, which is in a sense the opposite 
extreme of the previous model. As sketched in figure l O ( b ) ,  the contrarotating 
vortices might be much larger than the jet, which would then be a thin layer normal 
to the wind in the low-velocity region around the frontal stagnation point of the 
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d = O(z') 
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FIGURE 10. Two alternative structures of the jet cross-section for large z. 

vortex pair. Calling v -4 1 the characteristic horizontal velocity in this region, the 
estimate (ii) of $5 should be modified to w/z - v/Z, whereas (i) and (iii) still hold. The 
actual transfer of momentum from the wind to the jet would be due to the pressure 
difference between both sides of the layer (Ap = O(v2)) rather than to the momentum 
entrained directly with the surrounding fluid (because w 4 1).  The overall horizontal 
momentum balance for the flow outside the jet now yields the relation Zw2 - me (the 
defect of horizontal momentum in the wake is again negligible), which can be 
combined with the estimates (i)-(iii) to obtain 

z = 0(22), s = O(d),  w = O ( l / d ) ,  w = O ( l / d ) ,  (A 3) 

whereas the downwind shift (obtained as in 55 but with the pressure drag taking the 
place of the entrainment of horizontal momentum flux) is q, = O(z:), and the size of 
the contrarotating vortices is ZQ = O(Z/w) = O(z:) (because the order of the velocity is 
expected to grow proportionally to the distance to the stagnation point). Both xo and 
the size of the vortices predicted by this model are smaller than when v = O(l ) ,  giving 
a somewhat better agreement with the numerical results of figures 6 and 8. The main 
differences with the results of $5  are that the deflection of the jet is now due to 
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pressure drag and that the height a t  which the inclination becomes appreciable 
(w = 0(/3)) and three-dimensional effects come into play is z = O(l/@). A more 
detailed discussion of this model will be given elsewhere. 
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